Structural, biochemical, and physiological characterization of photosynthesis in two C4 subspecies of Tecticornia indica and the C3 species Tecticornia pergranulata (Chenopodiaceae).

نویسندگان

  • Elena V Voznesenskaya
  • Hossein Akhani
  • Nuria K Koteyeva
  • Simon D X Chuong
  • Eric H Roalson
  • Olavi Kiirats
  • Vincent R Franceschi
  • Gerald E Edwards
چکیده

Among dicotyledon families, Chenopodiaceae has the most C(4) species and the greatest diversity in structural forms of C(4). In subfamily Salicornioideae, C(4) photosynthesis has, so far, only been found in the genus Halosarcia which is now included in the broadly circumscribed Tecticornia. Comparative anatomical, cytochemical, and physiological studies on these taxa, which have near-aphyllous photosynthetic shoots, show that T. pergranulata is C(3), and that two subspecies of T. indica (bidens and indica) are C(4) (Kranz-tecticornoid type). In T. pergranulata, the stems have two layers of chlorenchyma cells surrounding the centrally located water storage tissue. The two subspecies of T. indica have Kranz anatomy in reduced leaves and in the fleshy stem cortex. They are NAD-malic enzyme-type C(4) species, with mesophyll chloroplasts having reduced grana, characteristic of this subtype. The Kranz-tecticornoid-type anatomy is unique among C(4) types in the family in having groups of chlorenchymatous cells separated by a network of large colourless cells (which may provide mechanical support or optimize the distribution of radiation in the tissue), and in having peripheral vascular bundles with the phloem side facing the bundle sheath cells. Also, the bundle sheath cells have chloroplasts in a centrifugal position, which is atypical for C(4) dicots. Fluorescence analyses in fresh sections indicate that all non-lignified cell walls have ferulic acid, a cell wall cross-linker. Structural-functional relationships of C(4) photosynthesis in T. indica are discussed. Recent molecular studies show that the C(4) taxa in Tecticornia form a monophyletic group, with incorporation of the Australian endemic genera of Salicornioideae, including Halosarcia, Pachycornia, Sclerostegia, and Tegicornia, into Tecticornia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

De novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae)

C4 photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C4 from ancestral C3 photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C3 and C4 species have significantly increased our unde...

متن کامل

Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis

In subfamily Salsoloideae (family Chenopodiaceae) most species are C4 plants having terete leaves with Salsoloid Kranz anatomy characterized by a continuous dual chlorenchyma layer of Kranz cells (KCs) and mesophyll (M) cells, surrounding water storage and vascular tissue. From section Coccosalsola sensu Botschantzev, leaf structural and photosynthetic features were analysed on selected species...

متن کامل

The unique structural and biochemical development of single cell C4 photosynthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae)

Temporal and spatial patterns of photosynthetic enzyme expression and structural maturation of chlorenchyma cells along longitudinal developmental gradients were characterized in young leaves of two single cell C4 species, Bienertia sinuspersici and Suaeda aralocaspica Both species partition photosynthetic functions between distinct intracellular domains. In the C4-C domain, C4 acids are formed...

متن کامل

Environmental regulation of C(3) and C(4) differentiation in the amphibious sedge Eleocharis vivipara.

The biochemical and physiological characteristics of C4 photosynthesis have been researched and clarified in detail. We now know that the differentiation of two cell types, mesophyll cells (MC) and bundle sheath cells (BSC), is required for efficient C4 photosynthesis. Thus, the leaves of C4 plants have more complicated structural and functional features than those of C3 plants (Hatch, 1999; Ka...

متن کامل

Update on C4 Photosynthesis Environmental Regulation of C3 and C4 Differentiation in the Amphibious Sedge Eleocharis vivipara

The biochemical and physiological characteristics of C4 photosynthesis have been researched and clarified in detail. We now know that the differentiation of two cell types, mesophyll cells (MC) and bundle sheath cells (BSC), is required for efficient C4 photosynthesis. Thus, the leaves of C4 plants have more complicated structural and functional features than those of C3 plants (Hatch, 1999; Ka...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 59 7  شماره 

صفحات  -

تاریخ انتشار 2008